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Abstract                             
Finite fields are well studied discrete structures with a vast array of useful properties and are indispensable in the theory and application of 
cryptography. Arithmetic in finite field is an integral part of many public key algorithms. The performance of elliptic curve based schemes 
depends on the efficient arithmetic in the underlying field. ; Cryptography is one of the most prominent application areas of finite field 
arithmetic. Most of public-key cryptographic algorithms including the recent algorithms such as elliptic curve and pairing-based cryptography 
rely heavily on finite field arithmetic, which needs to be performed efficiently to meet the execution speed and design space constraints. These 
objectives constitute massive challenges that necessitate research efforts that will render the best algorithms, architectures, implementations, and 
design practices. This paper aims to provide a concise perspective for efficient finite field arithmetic in the most widely used finite field for 
usage in cryptography, The Optimal Extension Field. 
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1.0  INTRODUCTION 
To implement an ECC, one must select an underlying 
finite field in which to perform arithmetic calculations. A 
finite field is identified with the notation GF(pm) for p a 
prime and m a positive integer. It is well known that 
there exists a finite field for all primes p and positive 
integers m. Any such field is isomorphic to 
GF(p)[x]/(P(x)), where                                          P(x) = 
𝑥𝑚 + ∑ 𝑝𝑖𝑥𝑖 ,𝑚−1

𝑖=0   𝑝𝑖𝜖𝐺𝐹(𝑝), is a monic-irreducible 
polynomial of degree m over GF(p). In the following, each 
residue class will be identified with the unique   
polynomial of least degree in this class.  
Various finite fields admit the use of different algorithms 
for arithmetic. Unsurprisingly, the choices of p, m, and 
P(x) can have a dramatic impact on the performance of 
the ECC. In particular, there are generic algorithms for 
arithmetic in an arbitrary finite field and there are 
specialized algorithms which provide better performance 
in finite fields of a particular form. In the following, we 
briefly describe field types proposed for ECC. The basic 
requirement for a fast and thus energy efficient 
implementation of ECC is a very fast multiplication in the 
prime field. The fastest known implementation was 
implemented by SUN Microsystems. [5] 
2.0  FINITE FIELDS 
Various finite fields admit the use of different algorithms 
for arithmetic.  The choice of p, m and p(x) can have a 
dramatic impact on the performance of the elliptic curve 
cryptography (ECC). There are generic algorithms in an 
arbitrary field and there are specialized algorithms which 
provide better performance in a finite field of a particular 
form.  
2.1 Binary Fields GF(2m): The finite field GF(2m) called a 
binary finite field of 2m elements implying that there exist 
a set of m elements {𝑎0,𝑎1,𝑎2, … 𝑎𝑚−1} in GF(2m) such that 
each  𝛼 𝜖 𝐺𝐹(2𝑚)  can be written  in the form 𝛼 =
 ∑ 𝛼𝑖𝑎𝑖𝑚−1

𝑖=0  where 𝛼𝑖 𝜖 {0,1}. 

Implementing the binary field in designing elliptic curve 
based schemes, one often choose p = 2 and P(x) to be a 
trinomial or pentanomial. Such choices of irreducible 
polynomial lead to efficient methods for extension field 
modular reduction. We will refer to this type of field as a 
binary field, The elements of the subfield GF(2) can be 
represented by the logical signals 0 and 1. In this way, it 
is possible to construct fast and area efficient finite field 
arithmetic. Binary fields are also popular for software 
implementations of  ECC. Many authors have suggested 
the use of p = 2 and m a composite number, In this case, 
the field GF(2m) is isomorphic to 𝐺𝐹((2𝑠)𝑟), for m = sr and 
we call this a composite field. 
 
2.2 Binary Composite Fields: An extension defined over 
a subfield of GF(2k) is known as a composite field denoted 
by GF((2n)m).  Considering the fact that both binary and 
composite fields 𝐺𝐹((2𝑛)𝑚) refer to same field, efficient 
implementation can be obtained for composite fields, 
since this field provides efficient implementations for 
specific operations such as multiplication, inversion and 
exponentiation. 
The composite field has the advantage  that its operations 
are computed using arithmetic in the subfield GF(2n) and 
the operations in the subfield can be efficiently performed 
by index table look-up if n is too large [3]. Thus instead of 
performing the computation in the binary field, it is more 
efficient to implement the composite field to perform the 
computations. This approach can provide superior 
performance when compared to the case of binary fields. 
However, a recent attack against ECCs over composite 
fields makes their use in practice questionable. 
 
2.3 Prime Fields: Prime fields, GF(pm) where m = 1 are 
perhaps the most obvious finite fields to use. For ECC, a 
typical prime is chosen to be larger than 2160, and must be 
stored in multiple computer words. The problem with 
this representation is that during computation, the carries 
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between words must be propagated, and the reduction 
modulo p must be performed over several words. There 
has been a large amount of research dealing with 
methods for doing long-number multi-precision 
arithmetic efficiently. Perhaps the most popular method 
in this context is based on Montgomery reduction. 
2.4 Optimal Extension Fields: An Optimal Extension 
Field (OEF) is a finite field F(pn) such that: 
(1) p is a pseudo-Mersenne prime. 
(2) An irreducible binomial p(x) = xn- 𝜔 exists over Fp. 
There are two types of OEF which yield additional 
arithmetic advantages  a Type I OEF which has p = 2n ∓P1 
allows for subfield modular reduction with very low 
complexity and a Type II OEF which has an irreducible 
binomial xm- 2 permits for a reduction in the complexity 
of extension field modular reduction. 
Optimal extension fields 𝐺𝐹((2𝑛 ∓ 𝑐)𝑚) offer considerable 
computational advantages by selecting p and m 
specifically to match the underlying hardware use to 
perform the required arithmetic. 
An alternative construction is to use optimal extension 
fields (OEFs), defined as follows. Choose p of the form 2n 
∓ c, for n; c arbitrary positive integers, where log2(c) ≤ 
1
2
𝑛. In this case, one chooses p of appropriate size to use 

the multiply instructions available on the target platform. 
In addition, m is chosen so that an irreducible binomial 
𝑃(𝑥) =  𝑥𝑚 −  𝜔, exists, 𝜔 𝜖 GF(p). Finite field arithmetic in 
extension fields is greatly influenced by the choice of 
basis in addition to the choice of p, m and p(x). Of the 
proposed bases for application namely: standard 
(polynomial) basis, normal basis and other basis (dual 
basis, triangular basis etc), the polynomial basis is highly 
recommended for implementation in elliptic curve 
cryptosystems. The representation of optimal extension 
field’s elements utilizes the polynomial basis. An element 
𝐴𝜖 𝐺𝐹(𝑝𝑚) is represented as 𝐴 = ∑ 𝑎𝑖𝑥𝑖 =  𝑎0 + 𝑎1𝑥 +𝑚−1

𝑖=0
 𝑎2𝑥2 + ⋯+ 𝑎𝑚−1𝑥𝑚−1      𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝜖 𝐺𝐹(𝑝). 
 
3.0  RELEVANT ALGORITHMS  
The key to a successful and efficient implementation of a 
cryptosystem is the choice of   algorithms to optimize the 
arithmetic. While a multitude of algorithms exist, it is 
important to carefully choose the best combination. In 
this chapter, we will discuss the primary algorithms used 
in this implementation. 
3.1 Karatsuba Multiplication: Extension field 
multiplication is the most costly basic arithmetic function 
in OEFs. For a given extension field of order n, n2 subfield 
multiplications are required to multiply two values using 
traditional polynomial multiplication. It is shown in [29] 
that this can be reduced drastically in certain cases. Using 
a method developed by Karatsuba and Ofman, the 
number of multiplications can be reduced in exchange for 
an increased number of additions. As long as the time 
ratio for executing a multiplication vs. an addition is 
high, this tradeoff is more efficient.  

A basic example of Karatsuba is given here to 
demonstrate its usefulness. 
Given two degree-1 polynomials, A(x) and B(x), we can 
demonstrate the traditional and the Karatsuba methods. 

A(x) = a1x + a0 
B(x) = b1x + b0 

For the traditional method, we must calculate the product 
of each possible pair of coefficients. 

D0 = a0b0 
D1 = a0b1 
D2 = a1b0 
D3 = a1b1 

Now we can calculate the product                                                   
C(x) = A(x) * B(x) as: C(x) = D3x2 + (D2 + D1)x + D0 
The Karatsuba method begins by taking the same two 
polynomials, and calculating the following three 
products: 

E0 = a0b0 
E1 = a1b1 

E2 = (a0 + a1)(b0 + b1) 
These are then used to assemble the result C(x) = A(x) * 
B(x): 
C(x) = E1x2 + (E2 - E1 - E0)x + E0 
It is easy to verify the results are equal. We can now look 
at how many operations are required for each method. 
The traditional method requires four multiplications and 
one addition, while the Karatsuba method requires three 
multiplications and four additions. Thus we have traded 
a single multiplication for three additions. If the cost to 
multiply on the target platform is as least three times the 
cost to add, then the method is effective. While this basic 
form of Karatsuba was presented in the original paper, 
there are a number of ways this method may be 
expanded to handle larger degree polynomials.  This 
therefore indicates that the Karatsuba algorithm is found 
to be  
3.2 Itoh-Tsujii Inversion: Extension field inversion is 
normally a costly operation, but the nature of OEFs 
allows the reduction of the extension field inversion to a 
subfield inversion. The Itoh-Tsujii algorithm which was 
originally developed for use with composite fields 
𝐺𝐹(2𝑛𝑚) in a normal basis representation can be applied 
to extension fields GF(qm) in polynomial representation. It 
is assumed that the subfield inverse can be calculated by 
efficient means, such as table-lookup or the Euclidean 
algorithm, given a small order of the subfield. To perform 
the OEF inversion, we use the following expression: 

𝐴−1 = (𝐴𝑟)−1𝐴𝑟−1,              𝑤ℎ𝑒𝑟𝑒 𝑟 =  
𝑞𝑚 − 1
𝑞 − 1

  

The Algorithm below shows the general case for 
inversion. It is key to observe that 𝐴𝑟 𝜖 𝐺𝐹(𝑞). Since r is 
known ahead of time, an efficient addition chain for the 
exponentiation in Step 1 can be pre-computed and 
hardcoded into the algorithm. 
Algorithm 1: General Inversion Algorithm in GF(qm) 
Require: 𝐴 𝜖 𝐺𝐹(𝑞𝑚) 
Ensure: 𝐶 ≡ 𝐴−1𝑚𝑜𝑑𝑝(𝑥) 
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1: 𝐵 ←  𝐴𝑟−1 (𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑖𝑛) 
2: 𝑏 ← 𝐵𝐴 =  𝐴𝑟−1𝐴 = 𝐴𝑟  𝜖𝐺𝐹(𝑞) 
3: 𝑏 ←  𝑏−1 = (𝐴𝑟)−1 
4: 𝐶 ← 𝑏𝐵 =  (𝐴𝑟)−1𝐴𝑟−1 =  𝐴𝑟−1 
can be formed utilizing [𝑙𝑜𝑔2(𝑚− 1)] + 𝑊𝐻(𝑚− 1)− 1 
extension field multiplications, 
where 𝑊𝐻(𝑚− 1) denotes the Hamming weight. 
To further reduce the complexity, we utilize the 
Frobenius map to compute the exponentiations of A 
occurring in the addition chain. As shown in [1], for an 
OEF with a binomial field polynomial, the pth iteration of 
the Frobenius map requires at most m-1 multiplications 
in GF(q), this therefore shows that the stress of inversions 
in optimal extension fields has be reduced to mere 
subfield inversion in which the norm function maps the  
elements of the extension field to the subfield by raising 
them to a certain power [16]. 
3.3 de Rooij Point Multiplication: The primary operation 
in an elliptic curve cryptosystem is point multiplication, 
C = kP. For large k, computing kP is a costly endeavor. 
However, well-studied techniques used for ordinary 
integer exponentiation can be advantageously adapted to 
this Setting. The most basic of these algorithms is the 
binary-double-and-add algorithm [29]. It has a 
complexity of 𝑙𝑜𝑔2(𝑘) + 𝑊𝐻(𝑘) group operations, where 
WH is the Hamming weight of the multiplier k. On 
average, then, we can expect this algorithm to require 1:5 
log2(k) group operations. Using more advanced methods, 
such as signed digit, k-ary or sliding window, the 
complexity may be reduced to approximately 1:2 log2(k) 
group operations on average. The situation is much better 
in applications where the point is known ahead of time. 
The most common public-key operation for a smart card 
or PDA is to provide a digital signature. The ECDSA 
algorithm involves the multiplication of a fixed curve 
point by the user-generated private key as the core 
operation. Because the curve point is known ahead of 
time, pre-computations may be performed to expedite the 
signing process. Using a method devised by de Rooij in 
[dR98], we are able to reduce the number of group 
operations necessary by a factor of four over the binary-
double-and-add algorithm. The de Rooij algorithm is a 
variant of that devised by Brickell, Gordon, McCurley, 
and Wilson [BGMW93], but requires far fewer pre-
computations. A modified form of de Rooij is shown in 
Algorithm 2. Note that the step shown in line 10 requires 
general point multiplication of AM by q, where 0 · q < b. 
This is accomplished using the binary-double-and-add 
algorithm. In [21], the author remarks that during 
execution, q is rarely greater than 1. The choice of t and b 
are very important to the operation of this algorithm. 
They are defined such that bt+1 ≥  #E(GF(pm)). The 
algorithm must be able to handle a multiplier, s, not 
exceeding the order of the elliptic curve. The number of 
point pre-computations and temporary storage locations 
is determined by t + 1, while b represents the maximum 

size of the exponent words. Thus we need to find a 
compromise between the two parameters.  
Algorithm 2:  Elliptic Curve Fixed Point Multiplication                                                                                    
Require: {b0A; b1A; : : : ; btA}, A 𝜖 E(GF(pm)), and                               
s = ∑ 𝑠𝑖𝑏𝑖𝑡

𝑖=0  
Ensure: C = sA, C 𝜖 E(GF(pm)) 
1: Define M 𝜖 [0; t] such that zM ≥ zi for all 0 ≤ i ≤ t 
2: Define N 𝜖 [0; t];N ≠ M such that zM ≥ zi for all 0 ≤ i ≤ t; i 
≠ M 
3: for i ← 0 to t do 
4: Ai ← biA 
5: zi ← si 
6: end for 
7: Determine M and N for {z0; z1; : : : ; zt} 
8: while zN ≥ 0 do 
9: q ← [zM/zN] 
10: AN ← qAM + AN     general point multiplication 
11: zM ← zM mod zN 
12: Determine M and N for {z0; z1; : : : ; zt} 
13: end while 
14: C ← zMAM 
 
CONCLUSION 
The underlying finite field is an important instrument in 
the efficiency of elliptic curve cryptosystems. The merits 
of optimal extension fields over other finite fields were 
demonstrated. Multiplication and squaring operations in 
OEFs were found to be slightly more efficient. Algorithms 
based on these theories and several techniques used to 
speed up the optimal extension field arithmetic were 
explained. This therefore shows that optimal extension 
fields are specially attractive for use in an elliptic curve 
based cryptographic scheme.  
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